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Non-crystallographic symmetry (NCS) averaging is a well

known method for improving the quality of an electron-

density map and thus aiding structure determination. Prior

methods of NCS-operator determination based on estimated

heavy-atom positions are prone to errors arising from

inaccuracies in these coordinates or differences in the relative

orientations of domains between molecules. In this paper, two

real-space methods to determine NCS relationships from

initial electron-density maps are presented. A brute-force

method identifies matching regions in a map by local density

correlation. A feature-based algorithm uses rotation-invariant

features to reduce the computational time taken by the brute-

force algorithm by filtering out regions that are likely to have

dissimilar density patterns. This makes the feature-based

algorithm faster and as accurate as the brute-force approach.

Neither method requires the positions of heavy atoms or any

information regarding the protein sequence. Both methods

have been tested on a diverse range of experimentally phased

maps and the correct NCS relationships were accurately

identified for almost all of the test cases. The NCS operators

obtained by the feature-based algorithm were used to perform

NCS averaging and an improvement in map correlation was

observed for some cases.
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1. Introduction

Knowledge of the non-crystallographic symmetry (NCS)

operators in an asymmetric unit (ASU) can greatly benefit the

structure-determination process (Rossmann, 1972; Bailey et

al., 1988; Bricogne, 1974). Real-space redundancies can be

exploited using density-modification techniques to average

out noise arising from phase error and to increase the signal-

to-noise ratio (Muirhead et al., 1967; Cowan et al., 1993;

Cowtan & Main, 1993; Terwilliger, 2000, 2002b). The density-

modification techniques result in higher quality electron-

density maps, which aids structure determination. However, as

NCS is not always exact and some regions of the subunits can

be more similar than others, it is often difficult to describe the

precise NCS relationships in poor/medium-quality electron-

density maps. The determination of NCS operators involves

the determination of one or more rotation matrices, the

translation vectors and the definitions of masks around

regions of the electron-density map related by the specified

rotation matrices and translation vectors.

Identification of NCS operators was first used to improve

estimates of phases by Rossmann & Blow (1962). Molecular-

replacement techniques have been used to identify symmetry

relationships (Main & Rossmann, 1966; Crowther, 1967;

Kleywegt & Jones, 1994; Vellieux & Read, 1997). These

techniques are capable of finding the rotational component of



the NCS operators and subsequent search methods are

required to find the translational component to generate the

complete transformation (McCoy et al., 2005; Navaza, 1994).

The presence of heavy atoms (obtained by MAD, SAD or

MIR techniques) in the crystal has often been used to identify

NCS. Since heavy atoms often bind to the same locations in

each protein subunit, they can be used as fiducial points and

the configuration of these atoms can be used to identify the

symmetry operators. The initial implementation of this

methodology (Lu, 1999) was a slow process and required N5

comparisons (N being the number of heavy-atom sites). A

more efficient algorithm for heavy-atom matching was

implemented in SOLVE (Terwilliger, 2002a). This imple-

mentation considered interatomic distances as constraints in

matching heavy atoms, leading to a reduction in the overall

run time. This technique suffers from several drawbacks. A

minimum of three heavy-atom positions in each subunit is

required to accurately identify the NCS operators. The process

of heavy-atom matching can also be sensitive to errors in the

heavy-atom coordinates, which can introduce errors into the

NCS operators. This is especially true in the early stages of

structure determination when phases are not very accurate.

An alternative approach to NCS-operator determination

involves looking for similarities between regions in the

electron-density map. Since NCS-related regions have more

similar density patterns in their local neighborhoods

compared with regions not related by NCS, a distinction can

be made between NCS-related regions and those that are not

based on a local density-correlation metric. These similarities

in density correlation can be recognized even at moderate or

low resolution. In this paper, two methods to compute NCS

operators based on analysis of patterns in the electron-density

maps are presented. A brute-force method was preliminarily

developed to identify NCS, which involved an all-against-all

computation of density correlations between regions of the

electron-density map. While this provides an accurate identi-

fication of the NCS operators and the masks defining the

region boundaries, it is inefficient. Thus, a heuristic feature-

based pattern-recognition approach was developed to

improve the time-performance of the algorithm.

The two methods start by constructing a rough initial

approximation of C� chains and use this to define centers of

regions to compare. They can be implemented early on in the

structure-determination process, thereby aiding rapid struc-

ture solution. Neither requires any information regarding

heavy-atom positions or any sequence information. The

operators determined by these algorithms are output in the

canonical format as required by DM (in the CCP4 program

suite) and are then automatically used to perform NCS aver-

aging. The input to the methods is a set of initial solvent-

flattened structure factors and the output is a set of improved

structure factors along with the NCS operators and masks.

2. Methods

The algorithms presented here attempt to imitate the process

intuitively used by a crystallographer to recognize regions of

electron density related by NCS, i.e. visually examining the

map for similar patterns of density in local neighborhoods.

Local neighborhoods refer to spherical regions surrounding a

particular point of interest. In this paper, regions are centered

on putative C� atoms obtained from a rough initial approx-

imation of C� chains determined by CAPRA (Ioerger &

Sacchettini, 2002). CAPRA uses a neural network to reason

about rotation-invariant features extracted from the electron-

density maps and determine preliminary C� chains. It is

capable of identifying (approximately) the trace of the back-

bone even in noisy density and at medium resolutions. While

these chains are not necessarily as accurate as a refined model,

the algorithms described here are tolerant to the minor

variations in C� coordinates.

The feature-based algorithm then calculates rotation-

invariant features (further described in x2.3) that characterize

the density patterns in a region. The features are computed

using a local neighborhood of 5 Å radius (the motivation for

the choice of this parameter is further described in x2.6).

Similar rotation-invariant features were used successfully in

model building as implemented in TEXTAL (Ioerger &

Sacchettini, 2003; Gopal et al., 2003). These features are

designed so that similarities in the electron density can be

captured irrespective of the three-dimensional orientations of

the corresponding regions.

In order to compare the densities between any two regions,

they are first optimally superposed and the similarity is then

computed using a local density-correlation metric. In

TEXTAL, the optimal superposition was found by a method

similar to sampling Euler angles, i.e. testing a subset of rota-

tions to find that which superposes the two regions with the

highest density correlation (Gopal et al., 2004). The density

correlation between any two regions given a rotation R is

computed as

ccðRÞ ¼
R1

x;y;z¼�1

R1
x;y;z¼�1

R1
x;y;z¼�1

�1ðR�2Þ � wðhx; y; ziÞ dx dy dz; ð1Þ

where �1 and �2 are the densities in the two regions at the

point described by Cartesian coordinates hx, y, zi (each

assumed to be translated to the origin) and w(hx, y, zi) is a

weighting function characterizing the boundaries of the

region. In this paper, a spherical region of radius 5 Å

surrounding each C� atom is used as the region of integration,

which is accomplished by setting the weighting function to be

wðhx; y; ziÞ ¼ 1 if jjhx; y; zijj < 5 Å

0 otherwise

�
:

The rotation matrix that optimally superposes two regions is

found by determining the R that maximizes the density

correlation between the two regions. Hence, the optimal

rotation matrix is

R� ¼ arg max
R

ccðRÞ: ð2Þ

Fig. 1 provides the pseudocode for the two algorithms

described here. In both methods, the local density-correlation

calculations output a best-matching region (region with

research papers

Acta Cryst. (2006). D62, 1012–1021 Pai et al. � Identifying NCS 1013



highest density correlation) elsewhere in the map for each

region surrounding a C� atom. This procedure also yields the

rotation matrix R�UV that optimally superposes a region U

(centered on u) and its match V (centered on v).

Next, rotation matrices are grouped into clusters based on

similarity. Similar rotation matrices are defined based on

whether they can map coordinates to the same locations (or

close enough, within a tolerance of 2 Å).

Definition 1: similar rotation matrices. Given R�UV and R�PQ as

rotation matrices that optimally superpose regions U and V

and regions P and Q, respectively, and u, v, p and q as the

coordinates of the centers of regions U, V, P and Q, respec-

tively, then R�UV is similar to R�PQ if q � R�UV p � 2 Å and

u � R�PQ v � 2 Å.

This definition is used to collate similar rotations, resulting in

clusters of rotations fR�UiVi
g that relate multiple pairs of

regions Ui and Vi. These pairs of regions can then be used to

construct a common rotation matrix Ry by simultaneously

superposing the pairs of coordinates fuig and fvig over all

matched pairs of regions in the cluster to minimize the r.m.s.d.

(Kabsch, 1978; Mackay, 1984; Coutsias et al., 2004).

To superpose two sets of points in the cluster, the centers of

masses must first be translated to the origin. The relationship

between the two sets of regions in the cluster can then be

described as

ðui � cuÞ ¼ Ryðvi � cvÞ; ð3Þ

where cu and cv are the centroids of the two sets of regions {Ui}

and {Vi}, respectively. (3) can be rewritten as

ui ¼ Ryvi þ Ty: ð4Þ

where Ty is the translational component between the two sets

of points and is defined as

Ty ¼ cv � Rycu: ð5Þ

hRy, Tyi will be henceforth referred to as cluster transforms.

2.1. Density-map preparation and generation of Ca chains

The input to the algorithms is a set of structure factors,

which are then used to generate an electron-density map. This

map should contain representatives from all N subunits of the

protein in the asymmetric unit, but none extra. To facilitate

the backbone tracing used by the algorithm, it is helpful for

the map to cover a complete molecule. To accomplish this,

FINDMOL (McKee et al., 2005) is used, which identifies a

contiguous cluster of atoms representing the complete protein

molecule using symmetry operations. A map, centered on

these atoms, with borders around it and the excess density is

masked to zero, is created.

CAPRA is then used to analyze the map built over the

multiple subunits of the protein and build a set of C� chains

that roughly approximates the protein backbone. Owing to

occasional breaks in the electron density, the CAPRA output

defining a single subunit of the protein typically consists of

multiple C� chains, with lengths ranging from 10 to 100 C�
atoms.

2.2. Local density-correlation calculations

In the case of the brute-force algorithm, the local density-

correlation metric is used to compute an all-against-all

comparison between the regions surrounding each C� atom in

the map. In the case of the feature-based algorithm, the

correlation is only computed between pairs of regions

obtained after filtering out regions with very large feature-

vector differences. In both cases, for each C� atom (Ci), its top

match [M(Ci), the region with highest density correlation] and

the rotation matrix, R�CiMðCiÞ
, optimally superposing these two

regions is found.

When the number of NCS operators is greater than two, a

single top match for each C� atom is still used. However,

different atoms from one subunit may be mapped to different

symmetry copies. This ensures that if some region of one of the

protein subunits is less ordered, the algorithms can still

accurately identify the relationship between other NCS copies

of the same region.

2.3. Feature-based region matching

For the feature-based algorithm, numeric feature vectors

based on the electron-density patterns are calculated for each

spherical region centered on a C� atom in the protein. The

features used are listed.

(i) The number of neighbors (C� atoms) within a 5 Å

radius.

(ii) The average value of density at all the neighboring C�
atoms within a 5 Å radius.

(iii) The distance between the central C� atom and the

center of mass of neighbors.
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Flowchart showing the algorithm flow for the two methods presented in
this paper.



(iv) The eigenvalues, sorted by magnitude, for the three

mutually perpendicular moments of inertia calculated based

on the inertia matrix.

(v) The three ratios of the eigenvalues: �0/�1, �0/�2 and

�1/�2, where �i is the ith eigenvalue

(vi) The standard deviation of the densities at each C� atom

within the 5 Å radius.

(vii) The variance of the densities at each C� atom within

the 5 Å radius.

(viii) The skew of the densities at each C� atom within the

5 Å radius, where skew is defined as

skew ¼

Pn
i¼1ðxi � �Þ

3

N � ð�Þ3
: ð6Þ

(ix) The kurtosis of the densities at each C� atom within the

5 Å radius, where kurtosis is defined as

kurtosis ¼

Pn
i¼1ðxi � �Þ

4

N � ð�Þ4
: ð7Þ

Each region has a unique feature vector hgi . . . gKi (where K

is the number of features) that is a function of its local density

pattern. Since each of the features has a different range, it is

necessary to normalize the feature vectors to ensure that this

difference in ranges does not bias the feature-vector

comparison (Duda & Hart, 1973). Given a set of M feature

vectors {hf11 . . . f1Ki, . . . , hfM1 . . . fMKi}, the normalized feature

vector hg01 . . . g0Ki is computed as

g0j ¼
gj � aj

bj � aj

; ð8Þ

where aj = miniffijg and bj = maxiffijg are the minimum and the

maximum values of the jth feature over all i feature vectors.

Given two normalized feature vectors hg01 . . . g0Ki and

hh01 . . . h0Ki, the similarity between them is evaluated using the

Euclidean distance metric (Duda & Hart, 1973) as

d ¼
1

K

PK
j¼1

ðg0j � h0jÞ
2

" #
: ð9Þ

The mean normalized feature differences between all possible

pairs of feature vectors (representing regions centered on C�
atoms) are then used in a selection step. For each feature

vector, only a subset of regions with relatively small feature

difference scores are considered for future density-correlation

calculations. This selection step is based on the reasoning that

regions related by NCS are expected to have similar density

patterns in the local neighborhood and therefore similar

feature vectors. Hence, pairs of regions with highly dissimilar

density patterns are filtered out.

The filtering procedure requires the determination of a

feature-difference threshold. The feature-vector difference for

most of the NCS-related regions should be below this

threshold, which was empirically determined to be 0.04

(further details regarding threshold selection are given in

x2.7). Hence, a subset of regions with d � 0.04 is chosen as

candidate-matching pairs for future computations of local

density correlations.

The feature-based algorithm was developed mainly to

improve the time-performance of the brute-force algorithm

(which scales up as N2
ca, where Nca is the number of predicted

C� atoms). The number of correlation calculations required is

significantly reduced by filtering out a subset of regions with

d � 0.04. The time-performance of the algorithm can be

further improved by setting a threshold for the maximum

number of correlations computed for each region. This

threshold was determined experimentally to be Nca/5.

The filtering steps drastically reduced the time taken for the

local density-correlation calculations. For example, on a map

with 810 C� atoms, the time taken for the algorithm reduced

from 51 to 7 min owing to the filtering. However, the

improvements in time-performance arising from the afore-

mentioned heuristics do not significantly degrade the accuracy

of the algorithm (see Fig. 2).

2.4. Extending and refining cluster transforms

The pairs of coordinate centers related by local rotation

matrices in a cluster are superposed to find the common

cluster transformation which best superposes these sets of

points. The confidence in a cluster transformation is propor-

tional to the number of center pairs in the cluster. Therefore,

in order to find the initial estimates of the NCS operators

relating N protein subunits, N � 1 cluster transforms are

chosen in order of largest first in terms of the number of

matched region pairs in the cluster.

Since the initial estimates for each cluster transform are

based on a small set of coordinate pairs (region centers), it is

necessary to refine these operators. The refinement is achieved

by extending the number of matched pairs of regions in each

cluster. This extension is based on the assumption that when
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Figure 2
Comparison of accuracy of identifying the NCS matches using the brute-
force method and the feature-based method presented in this paper on a
subset of six maps.



an appropriate transformation is applied to an additional

atom, there should be a nearby atom in its implied symmetry

position. Hence, the initial Ry and Ty are applied to all the C�
atoms in the map. If a transformed C� atom is close (within

2 Å) to any other C� atom, then both C� atoms are added to

the initial center pairs and Ry and Ty are recomputed. Each of

the N � 1 cluster transforms are similarly extended and these

N � 1 refined transforms then yield the final NCS operators

between the N protein subunits.

2.5. Output manipulations

The output consists of a set of N � 1 transformations,

including the refined cluster transformations and the corre-

sponding center pairs. While these transformations describe

the relationships between all of the protein subunits, they need

not necessarily be based on a common protein subunit. For

example, the transformations for a map with four protein

subunits M1 . . . M4 could be of the form M1!M2, M2!M4,

M3!M4. In order to input directly into DM they have to be

made relative to a single protein subunit, i.e. they have to be in

the form of M1!M2, M1!M3 and M1!M4. This conversion

into the DM canonical format can be achieved with a few

matrix manipulations. For example, considering the two

transformations relating M1!M2 and M2!M4, they can be

written as

M2 ¼ R1 �M1 þ T1; M4 ¼ R2 �M2 þ T2: ð10Þ

The second equation can be rewritten to provide a relation-

ship between M1 and M4 as follows,

M4 ¼ ðR2 � R1Þ �M1 þ ðR2 � T1 þ T2Þ: ð11Þ

The resulting transformation between M1!M4 consists of a

rotational component given by R2�R1 and a translational

component given by R2�T1 + T2.

In order to represent the transformations in canonical form,

it is necessary to define the protein subunit boundaries. When

the map is skeletonized by an automated algorithm such as

CAPRA, the extent of each subunit is not always obvious,

since the protein backbone is often broken into multiple

chains and these chains have to be partitioned into the various

subunits. Our approaches to extending clusters grow regions

to maximum boundaries that preserve symmetry, can detect

and exclude local regions of non-isomorphism and are not

sensitive to breaks in backbone connectivity.

This method of determining boundaries works best in cases

of improper symmetry, when the NCS operators do not form a

closed group (e.g. the operator that transforms A to B does not

transform B to A). In such cases, different operators are

required, so it can be safely assumed that any given transfor-

mation will not hold outside of the two subunits related by that

transformation. This allows a clear distinction between the

various subunits and each symmetric unit is defined as a set of

C� atoms that, when transformed using one of the N � 1

transformations, are within 2 Å of their NCS matches. This

grouping of atoms can be used to define a mask in the tradi-

tional sense. In the case of proper NCS symmetry, there can be

ambiguity in the boundaries between some protein subunits.

However, molecule boundaries could be identified by other

automated masking methods (Vellieux & Read, 1997).

2.6. Parameter selection: radius for density correlations

To find an NCS match for a C� atom, it is necessary to

compare density patterns in its local neighborhood to the

patterns surrounding other C� atoms. In this work, the defi-

nition of a local neighborhood is a spherical region centered

on a C� atom. The radius must be chosen with care. An ideal

radius is one that is large enough to ensure uniqueness while

at the same time being general enough to recognize the

similarities between the density patterns in a region and its

NCS matches. The optimal radius was determined empirically

by comparing regions in a subset of maps. The density patterns

between pairs of these regions, centered on C� atoms, were

compared using local density correlation at various radii.

In order to evaluate the efficacy of the algorithm over the

various radii, two metrics, distinguishability and accuracy,

were used. These two metrics define the suitability of the

density correlation as a distinguisher between regions related

by NCS and those that are not. Distinguishability is defined as

D ¼
ccðtrue matchÞ

ccðtop matchÞ
; ð12Þ

where cc(true match) refers to the density correlation between

region U and its true NCS match (any C� within 2 Å of one of

its symmetry positions, based on the actual operators from the

refined model) and cc(top match) refers to the highest density

correlation between region U and any other region in the

electron-density map. The value of distinguishability is equal

to 1 when the top match region is the same as the true match

region. A value close to 1 suggests that the density correlation

between the region U and its true match is very close to the

density correlation between region U and its top match.

Accuracy is defined as the ratio of the number of times the

top match is a true NCS match,

A ¼
countðtop match ¼ true matchÞ

total number of CA atoms
: ð13Þ

In order to find the ideal radius based on these two metrics,

distinguishability and accuracy, a subset of regions in several

test maps were considered and the variation of both metrics

over different radii (ranging from 4 to 10 Å) was computed for

pairs of regions in each map. For each C� atom in the test

maps, a match atom was found (as described previously in x2).

The values of distinguishability and accuracy were then

computed based on (12) and (13).

Fig. 3 shows the variation of distinguishability over the

radius range for all the different maps in the subset and Fig. 4

shows the variation of accuracy over the same range for the

maps. Both graphs show that there is a marked degradation in

distinguishability and accuracy when the radius for local

correlation is greater than 6 Å. The two values are maximal in

most cases at 5 Å. Hence, in subsequent experiments a radius

of 5 Å was used to limit the size of the local neighborhood for

each C� atom for density-correlation calculations.
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2.7. Parameter selection: feature-difference threshold

Regions related by NCS are expected to have similar

density patterns and hence very similar feature vectors. Thus,

the feature-vector difference can be used to filter out regions

that have dissimilar feature vectors and hence are not likely to

have similar density patterns. A feature-difference threshold

that culls out dissimilar pairs of regions and retains a subset of

regions that have similar density patterns was experimentally

determined based on a subset of maps. For each of these maps,

the threshold was varied from 0 to 0.2 in steps of 0.01. For each

threshold, the percentage of the candidate number of region

pairs eliminated owing to the threshold and the percentage of

remaining regions with the correct NCS match were

computed.

Fig. 5 shows the variation of these two percentages with the

threshold value. The figure shows that the feature difference

between a region and its true NCS match is almost always less

than 0.1. However, this threshold does not effectively cull out

dissimilar regions. A threshold of 0.04 eliminates the largest

percentage of dissimilar regions, while at the same time

allowing the true match to be retained in the subset of regions

considered for future calculations. Hence, the threshold was

set at 0.04. Fig. 6 shows the drastic reduction in time, typically

by over 60%, achieved by applying this threshold for feature-

based filtering of candidate pairs of matching regions.

3. Results and discussion

The algorithms were evaluated using 11 experimental

structure-factor data sets. The number of NCS-related sub-

units in these experimental electron-density maps varied from

two to eight. FINDMOL was used to generate the electron-

density maps for the proteins within a contiguous envelope

surrounding the proteins at 2.8 Å resolution. The resolution of

the map is not a limiting factor for the algorithm itself.

However, CAPRA performs best at medium resolutions and

since the backbone prediction is the main basis for the feature-

matching component, the maps were calculated at 2.8 Å.

The experimental data sets used in this study were phased

by various methods (MAD, MIR, SAD) and were all density-

modified [solvent-flattened in CNS (Brünger et al., 1998),

although none were NCS-averaged]. Solvent flattening is

important for CAPRA, but since this is a straightforward

pre-processing step, this requirement does not reduce the

generality of the proposed methods. The experimental data

sets were for cyclopropane synthase (Huang et al., 2002; PDB

code 1l1e), granulocyte macrophage colony-stimulating factor

(Rozwarski et al., 1996; PDB code 2gmf), isocitrate lyase

(Sharma et al., 2000; PDB code 1f61), flavin reductase (Tanner

et al., 1996; PDB code 1bkj), mannose-binding protein

(Burling et al., 1996; PDB code 1ytt), osmotically induced

protein C from Escherichia coli (Shin et al., 2004; PDB code

1nye), P32 (Jiang et al., 1999; PDB code 1p32), PDZ domain

(Doyle et al., 1996; PDB code 1kwa), S-adenosylhomocysteine

hydrolase (Turner et al., 1998; PDB code 1a7a), phosphatase

from Thermotoga maritima (Shin et al., 2003; PDB code 1nf2)

and Lyme disease variable surface antigen (Eicken et al., 2002;

PDB code 1l8w). In this work, the experimental phases before

symmetry averaging were used as inputs to the algorithms.

Table 1 further describes the input data sets. The quality of the

input phases for each of the experimental data sets was

measured using the normal correlation coefficient between the

map densities based on true phases (2Fo � Fc map calculated

from refined model) and experimental phases. Table 1 shows

that the map correlation for the data sets ranges from 0.31 to

0.84. Lunin & Woolfson (1993) suggest that a correlation

coefficient greater than 0.4 or 0.5 indicates a promising

starting point for map interpretation.

Both the algorithms were able to determine the NCS

operators from the experimental phases. The accuracy of the

transformations output by the two algorithms can be calcu-

lated by superposing the protein subunits related by each

transformation. Given two protein subunits X and Y, one way

to measure the accuracy of the transformation relating X and

Y is to evaluate the superposition of transformed X (X 0) on Y.

If the superposition is such that all the NCS-related C� atoms

in X 0 and Y are placed in close proximity (low r.m.s.d.) to each

other, then the transformation matrix is said to be accurate.
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Table 1
Information about proteins used in this study.

PDB
code

Original
resolution (Å)

Space
group

No. of NCS
subunits

Map
correlation

1a7a 2.8 C222 2 0.845
1bkj 1.8 P21 2 0.443
1l1e 2.8 P65 2 0.505
2gmf† 2.35 P212121 2
1f61 1.8 P6522 2
1nye 3 P21 8 0.506
1kwa 1.93 C2221 2 0.475
1l8w 2.3 P2 4 0.454
1p32 2.25 P21 3
1nf2† 3 C2 3 0.313
1ytt 1.8 P212121 2 0.667

† NCS averaging was used to solve the final structures of 2gmf and 1nf2, but the non-
averaged phases were used as input to the algorithms described in this paper.

Table 2
Results using the brute-force and feature-based methodologies described
in this paper.

Average distance between NCS-related C� atoms

PDB
code

No. of NCS
subunits Brute-force Feature-based

1a7a 2 0.667 0.670
1bkj 2 0.829 0.819
1l1e 2 0.733 0.739
2gmf 2 0.858 0.857
1f61 2 0.656 0.655
1nye 8 0.758, 0.768, 0.771 0.713, 0.757, 0.771

0.779, 0.807, 0.813 0.819, 0.844, 0.917
1kwa† 2 1.06 1.43
1l8w 4 0.954, 1.039, 1.03 0.82, 0.858, 1.09
1p32 3 0.752, 0.926 0.801, 0.883
1nf2 3 0.954, 0.976 0.954, 0.979
1ytt 2 0.791 0.780

† The NCS operators for 1kwa were determined using a density correlation radius of
6 Å.



Table 2 shows that the brute-force method is able to accurately

identify the NCS relationships between the various subunits

and superpose the structures accurately. The r.m.s.d. of

superposition based on the computed NCS operators ranges

from 0.65 to 1.06 Å. All expected operators are found in each

case, except for 1nye (six instead of seven, for N = 8).

The largest r.m.s.d. of superposition is for 1kwa (1.06 Å),

which also happens to have a low map correlation (0.475 Å)

with the 2Fo � Fc map, suggesting that there might be a link

between the quality of the operators obtained and the quality

of the input data. Additionally, for structure 1kwa, NCS

operators could not be accurately determined when the

density correlation was computed using a spherical radius of

5 Å, but the operators were accurately determined with an

r.m.s.d value of 1.06 Å when the density correlation was

computed using a spherical radius of 6 Å. This indicates that

for some structures with low map correlation it might be

necessary to increase the radius for density correlations. This

increase in radius might mitigate the effects of local noise by

capturing information over a larger neighborhood.

Table 2 also shows that the feature-based method is able to

accurately identify the NCS relationships between the various

subunits and superpose the structures with an accuracy almost

equivalent to that of the brute-force method. These outputs
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Figure 5
Plot used to determine the feature-difference threshold. Curve 1 for each
map shows the percentage of pairs of regions eliminated owing to the
feature-difference threshold. Curve 2 for each map shows the percentage
of times the true match for a region has a feature difference less than the
threshold.

Figure 3
Variation of distinguishability of matching based on local density-
correlation radii for four maps.

Figure 6
Variation of time for NCS determination by the feature-based method
using various feature difference thresholds. ‘Inf’ means no threshold was
used, which simulates the brute-force method.

Figure 4
Variation of accuracy over different local density-correlation radii for
four maps.



are obtained much faster (a decrease of almost 60% in

computational time for most of the test cases) with fewer

density correlation computations (owing to the selection

procedure based on feature similarity). The average difference

in the accuracies of the brute-force and the feature-based

methods is less than 0.02. Once again, the best is around

0.65 Å for 1f61 and the operators obtained for 1kwa (at 6 Å)

yield the highest r.m.s.d. value (1.43 Å).

Both the brute-force and the feature-based methods are

able to compute the boundaries of each subunit accurately for

most of the test cases. All the NCS operators are based on the

approximate positions of the C� atoms and are therefore still

unrefined. This results in subunit definitions that are not

completely accurate. Additionally in the case of some proteins

such as 1f61, 1bkj and 1a7a, all of which are dimers, proper

NCS symmetry relates the two subunits. This results in a

failure to accurately partition the C� atoms based on the

method presented in this paper, even though the operators

were accurately defined. In the case of the trimeric protein

1nf2, there is a mix of proper and improper NCS symmetry.

The subunit related by improper NCS is accurately parti-

tioned, whereas in the case of the subunits related by proper

NCS, a few C� atoms (less than 20 atoms) are incorrectly

partitioned. Table 3 lists the percentage of C� atoms of each

subunit that were correctly classified using the determined

NCS operators.

The rotation-invariant features used in this study attempt to

capture the general density patterns in a local neighborhood.

Hence, the features are tolerant of minor inaccuracies in C�
positions, as well as insertions and deletions in the backbone.

Fig. 7 shows the variation of accuracy of the feature-based

method as a function of the variations in C� coordinates. The

position of each C� atom from the true structure was varied

systematically from 0.01 to 1.6 Å (perturbing the coordinates

of each atom in random directions). The figure shows that the

performance of the algorithm degrades gradually. For

example, in 1ytt, the accuracy drops from 0.4 to 0.2 with 1 Å of

error. Furthermore, the process used to extend these feature

matches is also resistant to these inaccuracies in the backbone,

making the feature-based approach a very robust alternative

to traditional approaches of NCS-operator determination.

Fig. 8 shows graphically the accuracy of the superpositon

obtained by the transformations output from the feature-

based method for three example proteins: 2gmf (two sub-

units), 1a7a (two subunits) and 1p32 (three subunits).
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Table 3
Subunit-boundary definitions using the NCS operators from the two
methods.

PDB
code

No. of NCS
subunits

No. of NCS
subunits found

Percentage of C� atoms
accurately assigned
using NCS

1l1e 2 2 0.86
2gmf 2 2 1
1kwa 2 2 0.64
1nf2 3 3 1, 0.95
1ytt 2 2 0.94

Figure 7
Variation of accuracy with random perturbations in C� coordinates for
the feature-based method, starting from the true C� coordinates (from
refined model).

Figure 8
Superposition of NCS-related subunits obtained using the transformation matrices for the proteins (a) 2gmf (two identical subunits), (b) 1a7a (two
identical subunits) and (c) 1p32 (three identical subunits). The transformed subunits are superposed onto the original subunits. Backbone models (C�
traces only) are shown, with different subunits shown in different colors, with one subunit superposed onto its symmetry copy using the operators found.
In the case of (c), both the green and purple subunits are shown superposed onto the red subunit.



The NCS operators obtained by the feature-based algo-

rithm were input to DM to perform NCS averaging (using

masks generated automatically from the operators in CCP4).

This averaged density was then compared with the 2Fo � Fc

map. Table 4 shows the improvement in the map correlation

after NCS averaging for a subset of maps. For most of the

maps, the map correlation increases by around 10%. In the

case of 1bkj this increase is almost 25%. This shows that the

NCS operators identified by the two methods are able to make

an improvement to the map quality and thereby increase the

potential for solving the structure.

3.1. Case study 1: PGDH

The structure of Mycobacterium tuberculosis phospho-

glycerate dehydrogenase (PGDH) was solved at 3.1 Å (Dey et

al., 2005; PDB code 1ygy) using SeMet MAD phasing. There

are two subunits in the ASU and the NCS operators were

unknown when the structure was initially solved; hence, no

NCS averaging had been performed. Each of the subunits has

four well defined domains: a nucleotide-binding domain, a

substrate-binding domain, a regulatory domain and an inter-

vening domain. The nucleotide-binding, substrate-binding and

regulatory domains are homologous to those found in E. coli.

The intervening domain is not found in the E. coli PGDH.

Additionally, the structure indicates the presence of two

different conformations among the subunits in the ASU.

Superposition of the various domains between the two sub-

units shows that if the nucleotide-binding and the substrate-

binding domains are used as reference, the other two domains

are rotated by approximately 180�.

The 3.1 Å experimental data set was input to the feature-

based algorithm to determine the NCS operators between the

two molecules (represented by chains A and B). As described

earlier, there are two NCS transformations that exist between

the two molecules. The approach developed in this paper

requires the specification of the number of transformations

expected. For this particular test case, the number of trans-

formations was required to be set to three1. The first trans-

formation finds the NCS relationship between the nucleotide

and substrate-binding domains of chain A with those of chain

B, the second finds the NCS relationship between the

nucleotide and substrate-binding domains of chain B with

those of chain A and the third transformation finds the NCS

relationship between the regulatory and intervening domains

of chain A with those of chain B. The first and the third

transformations are then selected to perform NCS averaging

using DM.

Using the feature-based algorithm described in this paper,

the substrate- and nucleotide-binding domains between the

two subunits are superposed with an r.m.s.d. of 1.03 Å and the

regulatory and intervening domains are superposed with an

r.m.s.d. of 0.89 Å.

3.2. Case study 2: SecE2

This is an unpublished structure (A. Arockiasamy & J.

Sacchettini) from M. tuberculosis annotated as SecE2

(Rv0397). It was solved at 1.8 Å using platinum MAD phasing.

There are 12 subunits in the ASU and the NCS operators were

not used to solve the structure. The structure was solved by

using its homology with a dodecine from M. tuberculosis. This

spherical dodecamer has a total of 852 residues and is a

conserved protein whose function is unknown. CAPRA built

95% of these C� atoms.

Eight unique NCS operators were determined using the

pattern-recognition algorithm described here. These operators

were successfully extended using the methology described

earlier to determine the relationships among all the 12 sub-

units with the following r.m.s.d. values (in Å): 0.89, 0.9, 0.91,

1.03, 1.04, 1.05, 1.06, 1.06, 1.08, 1.3 and 1.46.

4. Conclusion

This paper describes two related approaches to determining

NCS relationships in a map with multiple NCS-related sub-

units. Both approaches use local density correlation to detect

symmetry between regions of the map and this metric has

proved to be a robust and accurate indicator of NCS.

The brute-force algorithm determines symmetry-related

regions based on all-against-all comparison using local density

correlations and was able to accurately determine the NCS

operators in all but one of the test cases. It has advantages

over traditional methods that rely on heavy-atom sites.

However, it is a computationally intensive algorithm. The

feature-based algorithm was designed to address this concern.

It uses rotation-invariant features to characterize regions in

the map and reduces the correlation computations required by

filtering out pairs of regions whose feature vectors have high

difference. The feature-based filtering makes the approach

more efficient than the brute-force algorithm described here.

The two approaches can be applied to unrefined maps

(although solvent flattening is usually still necessary for

automated backbone tracing), are tolerant of noise and

require neither the location of heavy atoms nor any other

information such as the amino-acid sequence. The use of local

density correlation over regions of 5 Å makes these algo-

rithms robust. Despite the fact that these approaches use only

a rough approximation of the C� chains, the results obtained

from both the algorithms are nearly as good as the results
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Table 4
Comparison of map correlation before and after NCS averaging by DM
using operators found by the feature-based algorithm.

Map correlation

PDB code Before NCS averaging After NCS averaging

1a7a 0.845 0.859
1bkj 0.443 0.600
1kwa 0.475 0.531
1ytt 0.667 0.692

1 In cases when the number of NCS operators (N) is unclear, it is possible to
search for M (�N) operators. The additional operators can be filtered out
based on the number of regions that can be superposed using the operators.



obtained by previous methods that determine NCS operators

from previously built models.

Given the accuracy of the algorithms even for medium-

quality maps, they hold great promise for determining NCS

operators and performing symmetry averaging to auto-

matically improve the quality of electron-density maps. The

feature-based algorithm is available online at http://

textal.tamu.edu/NCS/index.html.
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